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Abstract

Traditional segmentation algorithms are prone to make
topological errors on fine-scale structures, we propose
a novel method to segment with correct topology
•Proposed a new topological loss by persistent

homology
• Incorporated the loss function into end-to-end training

of deep neural network
•The results demonstrated that our method segments

images with correct topology

Motivation

Topological errors on fine-scale structures are nonnegligible
in cell nuclei segmentation tasks

Topological Data Analysis

•Filtration and Betti Number (β0, β1, ...)
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Figure 11
(a) The support S of the distribution. (b–d ) Union of balls

�n
i=1 B(Xi , �), approximately 60 data points drawn from a uniform on S, with

� = 0.03, 0.10, 0.30.

that the topological features appear and disappear as � increases. For example, when � = 0, there
are n connected components (that is, n disconnected balls). As � increases, some of the connected
components die (that is, they merge) until only one connected component remains. (A connected
components consists of overlapping balls.) Similarly, at a certain value of �, a hole is born. The
hole dies at a larger value of �.

Thus, each feature has a birth time and a death time. The left plot in Figure 12 is a barcode
plot, which represents the birth time and death time of each feature as a bar. The right plot is
a persistence diagram, where each feature is a point on the diagram and the coordinates of the
points are the birth time and death time. Features with a long lifetime correspond to points far
from the diagonal. With this simple example in mind, we delve into more detail.
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Figure 12

(a) The barcode plot corresponding to the data from Figure 11. The gray lines show the birth and death of each connected component
as � increases. The red line shows the birth and death of the hole as � increases. (b) The persistence diagram. In this case, the birth and
death time of each feature is represented by a point on the diagram. The blue points correspond to connected components. The red
triangle corresponds to the hole. Points close to the diagonal have a short lifetime.

19.14 Wasserman

A
nn

u.
 R

ev
. S

ta
t.

 A
pp

l.
 2

01
8.

5.
 D

ow
n

lo
ad

ed
 f

ro
m

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

o
vi

de
d 

by
 U

ni
v

er
si

ty
 o

f 
N

ew
 E

ng
la

nd
 o

n 
12

/1
5/

1
7.

 F
o

r 
pe

rs
on

al
 u

se
 o

nl
y

. 

•Barcode and Persistence Diagram
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(a) The support S of the distribution. (b–d ) Union of balls
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i=1 B(Xi , �), approximately 60 data points drawn from a uniform on S, with

� = 0.03, 0.10, 0.30.

that the topological features appear and disappear as � increases. For example, when � = 0, there
are n connected components (that is, n disconnected balls). As � increases, some of the connected
components die (that is, they merge) until only one connected component remains. (A connected
components consists of overlapping balls.) Similarly, at a certain value of �, a hole is born. The
hole dies at a larger value of �.

Thus, each feature has a birth time and a death time. The left plot in Figure 12 is a barcode
plot, which represents the birth time and death time of each feature as a bar. The right plot is
a persistence diagram, where each feature is a point on the diagram and the coordinates of the
points are the birth time and death time. Features with a long lifetime correspond to points far
from the diagonal. With this simple example in mind, we delve into more detail.
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(a) The barcode plot corresponding to the data from Figure 11. The gray lines show the birth and death of each connected component
as � increases. The red line shows the birth and death of the hole as � increases. (b) The persistence diagram. In this case, the birth and
death time of each feature is represented by a point on the diagram. The blue points correspond to connected components. The red
triangle corresponds to the hole. Points close to the diagonal have a short lifetime.
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Topological  Loss  Computation

•  Compute  persistence  diagrams
  from  likelihood  and  ground  truth

•  Match  diagrams  Dgm(f)  and
  Dgm(g)  to  compute  Ltopo

•Density Maps and Critical Points
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1.5 Functionson smoothmanifolds

R

R

(a) (b)

Figure1.8: (a)Thegraphof afunction f : R2→ R. (b)Thegraphof afunction f : R→ Rwith
critical pointsmarked.

Inprevioussections,weintroducedtopological spaces, includingthespecial caseof (smooth)
manifolds. Very often, aspacecanbeequippedwith continuous functionsdef nedon it. In this
section,wefocusonreal-valued functionsof theform f : X→ R def nedonatopological space
X,alsocalledscalar functions;seeFigure1.8(a) for thegraphof afunction f : R2→ R. Scalar
functions appear commonly in practice that describe space/data of interest (e.g., the elevation
functiondef nedon thesurfaceof earth). Weare interested in the topological structuresbehind
scalar functions. Inthissection,welimitourdiscussiontonicelybehavedscalar functions(called
Morse functions) def ned on smoothmanifolds. Their topological structures are characterized
by the so-called critical points which wewill introduce below. Later in the book wewill also
discuss scalar functionsonsimplicial complex domains, aswell asmorecomplexmapsdef ned
onaspaceX,e.g.,amultivariatefunction f : X→ Rd.

1.5.1 Gradientsand critical points

Inwhatfollows,forsimplicityof presentation,weassumethatweconsidersmooth(C∞-continuous)
functionsandsmoothmanifoldsembeddedinRd,eventhoughoftenweonlyrequirethefunctions
(resp.manifolds)tobeC2-continuous(resp.C2-smooth).
To provide intuition, let us start with a smooth scalar function def ned on the real line: f :

R → R; the graph of such a function is shown in Figure 1.8 (b) on the right. Recall that the
derivativeof afunctionatapoint x∈R isdef nedas:

Df(x) =
d
dx
f(x) = lim

t→0

f(x+t)− f(x)
t

. (1.1)

ThevalueDf(x)givestherateof changeof thevalueof f atx. Thiscanbevisualizedastheslope
of the tangent lineof thegraphof f at (x, f(x)). Thecritical points of f are theset of points x
suchthatDf(x) =0. For afunctiondef nedonthereal line, therearetwotypesof critical points
inthegeneric case:maximaandminima,asmarkedinthef gure.
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•Matching Processes between Persistence Diagrams
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•Loss Function
L(f, g) = Lbce(f, g) + λLtopo(f, g)

where γ∗ is the optimal matching

Experimental Results

•β0-Based TopoLoss on TCIA Dataset

Sample Image Ground Truth

Without TopoLoss With TopoLoss
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•β1-Based TopoLoss on ISBI12 Dataset
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Conclusions and Future Work

•Outstanding performance in segmenting fine structure
images in both the β0 and β1 TopoLoss evaluations, while
segmentation results under β0 baseline lead to some noises,
a noise-robust model may be used in subsequent study

•Consideration of topological loss as transferability in
transfer learning tasks in future works
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