Tumor Cell Nuclei Segmentation with Topology-Preserving Dexu Kong, Anping Zhang [†]Tsinghua-Berkeley Shenzhen Institute, Tsinghua University ### **Abstract** Traditional segmentation algorithms are prone to make **topological errors** on fine-scale structures, we propose a novel method to segment with **correct topology** - Proposed a new topological loss by persistent homology - Incorporated the loss function into end-to-end training of deep neural network - The results demonstrated that our method segments images with correct topology ## Motivation Topological errors on fine-scale structures are **nonnegligible** in cell nuclei segmentation tasks ## Topological Data Analysis • Filtration and Betti Number (β_0 , β_1 , ...) Barcode and Persistence Diagram ## **TopoNet** Density Maps and Critical Points Matching Processes between Persistence Diagrams Loss Function $$L(f,g) = L_{bce}(f,g) + \lambda L_{topo}(f,g)$$ $$L_{topo}(f,g) = \sum_{p \in \mathrm{Dgm}(f)} \left[\mathrm{b}(p) - \mathrm{b}(\gamma^*(p)) ight]^2 + \left[\mathrm{d}(p) - \mathrm{d}(\gamma^*(p)) ight]^2$$ where γ^* is the optimal matching ## **Experimental Results** • β_0 -Based TopoLoss on TCIA Dataset • β_1 -Based TopoLoss on ISBI12 Dataset ### **Conclusions and Future Work** - Outstanding performance in segmenting fine structure images in both the β_0 and β_1 TopoLoss evaluations, while segmentation results under β_0 baseline lead to some noises, a noise-robust model may be used in subsequent study - Consideration of topological loss as transferability in transfer learning tasks in future works #### Reference Hu, X., Li, F., Samaras, D. and Chen, C., 2019. Topology-Preserving Deep Image Segmentation. Advances in neural information processing systems.