Abstract

Traditional segmentation algorithms are prone to make
topological errors on fine-scale structures, we propose
a novel method to segment with correct topology

e Proposed a new topological loss by persistent
homology

e Incorporated the loss function into end-to-end training
of deep neural network

e [ he results demonstrated that our method segments
images with correct topology

Motivation

Topological errors on fine-scale structures are nonnegligible
in cell nuclei segmentation tasks

Topological Data Analysis
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TopoNet Experimental Results
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Conclusions and Future Work

e Matching Processes between Persistence Diagrams

Matching Process for Critical Points
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e Outstanding performance in segmenting fine structure

images in both the 5y and 3; Topoloss evaluations, while
segmentation results under 3 baseline lead to some noises,
a noise-robust model may be used in subsequent study

e Consideration of topological loss as transferability in
transfer learning tasks in future works
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L(fv g) — Lbce(fa g) = ALtOpO(f? g)

Lipo(f:9) = ) [b(®) —b(v*(®))]" + [d(p) — d(v*(»))

peDgm(f) Reference

Where ,y* iS the Optlma| matching Hu, X., Li, F., Samaras, D. and Chen, C., 2019. Topology-Preserving Deep Image Segmentation.
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